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A Brief History of the Java™

Programming Language

• 1995 (1.0)—First public release
─ Hit a sweet spot!

• 1997 (1.1)—Nested classes added
─ Support for function objects

• 2001 (1.4)—Assertions added
─ Verify programmers understanding of code
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Watch Out for Tigers!

• Java 2 Platform, Standard Edition Release 1.5
• Code name “Tiger”
• Beta—Early 2004
• A major theme—ease of development
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Significant Language Changes
Planned for Tiger

   I. Generics
  II. Enhanced for Loop ("foreach")
 III. Autoboxing/Unboxing
 IV. Typesafe Enums
  V. Varargs
 VI. Static Import
VlI. Annotations
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Unifying Theme—
Developer-Friendliness

• Increase expressiveness
• Increase safety
• Minimize incompatibility

─ No substantive VM changes
─ All binaries, most sources run unchanged
─ New keywords kept to a minimum (1)
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Disclaimer

• All subject to Java Community ProcessSM

─ JSR-014 Generics
─ JSR-175 Metadata (Annotations)
─ JSR-201 Remaining language changes

• For more information
─ http://www.jcp.org

• Participate!
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I. Generics

• When you get an element from a collection,
you have to cast
─ Casting is a pain
─ Casting is unsafe—casts may fail at runtime

• Wouldn’t it be nice if you could tell the compiler
what type a collection holds?
─ Compiler could put in the casts for you
─ They’d be guaranteed* to succeed

* Offer void where prohibited by law.  Price does not include dealer preparation and licensing.
  Your mileage may vary.  Cash value 1/20c.
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Filtering a Collection—Today

// Removes 4-letter words from c; elements must be strings
static void expurgate(Collection c) {
    for (Iterator i = c.iterator(); i.hasNext(); )
        if (((String) i.next()).length() == 4)
            i.remove();
}

// Alternative form - a bit prettier?
static void expurgate(Collection c) {
    for (Iterator i = c.iterator(); i.hasNext(); ) {
        String s = (String) i.next();
        if (s.length() == 4)
            i.remove();
    }
}
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Filtering a Collection With Generics

// Removes 4-letter words from c
static void expurgate(Collection<String> c) {
    for (Iterator<String> i = c.iterator(); i.hasNext(); )
        if (i.next().length() == 4)
            i.remove();
}

• Clearer and Safer
• No cast, extra parentheses, temporary variables
• Provides compile-time type checking
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Generics Are Not Templates

• No code-size blowup
• No hideous complexity
• No “template metaprogramming”
• Simply provides compile-time type safety

and eliminates the need for casts
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II. Enhanced for Loop (“foreach”)

• Iterating over collections is a pain
• Often, iterator unused except to get elements
• Iterators are error-prone

─ Iterator variable occurs three times per loop
─ Gives you two opportunities to get it wrong
─ Common cut-and-paste error

• Wouldn’t it be nice if the compiler took care
of the iterator for you?
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void cancelAll(Collection c) {
    for (Iterator i = c.iterator(); i.hasNext(); ) {
        TimerTask tt = (TimerTask) i.next();
        tt.cancel();
    }
}

Applying a Method to Each
Element in a Collection—Today



   Forthcoming Java Programming Language Features13

void cancelAll(Collection c) {
    for (Object o : c)
        ((TimerTask)o).cancel();
}

• Clearer and Safer
• No iterator-related clutter
• No possibility of using the wrong iterator

Applying Method to Each Element
In a Collection With Enhanced for
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void cancelAll(Collection<TimerTask> c) {
    for (TimerTask task : c)
        task.cancel();
}

• Much shorter, clearer and safer

• Code says exactly what it does

Enhanced for Really Shines
When Combined With Generics
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// Returns the sum of the elements of a
int sum(int[] a) {
    int result = 0;
    for (int i : a)
        result += i;
    return result;
}

• Eliminates array index rather than iterator
• Similar advantages

It Works For Arrays, Too
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List suits = ...;
List ranks = ...;
List sortedDeck = new ArrayList();

// Broken - throws NoSuchElementException!
for (Iterator i = suits.iterator(); i.hasNext(); )
    for (Iterator j = ranks.iterator(); j.hasNext(); )
        sortedDeck.add(new Card(i.next(), j.next()));

Nested Iteration Is Tricky
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List suits = ...;
List ranks = ...;
List sortedDeck = new ArrayList();

// Broken - throws NoSuchElementException!
for (Iterator i = suits.iterator(); i.hasNext(); )
    for (Iterator j = ranks.iterator(); j.hasNext(); )
        sortedDeck.add(new Card(i.next(), j.next()));

// Fixed - a bit ugly
for (Iterator i = suits.iterator(); i.hasNext(); ) {
    Suit suit = (Suit) i.next();
    for (Iterator j = ranks.iterator(); j.hasNext(); )
        sortedDeck.add(new Card(suit, j.next()));
}

Nested Iteration Is Tricky
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With Enhanced for, It’s Easy!

for (Suit suit : suits)
    for (Rank rank : ranks)
        sortedDeck.add(new Card(suit, rank));
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III. Autoboxing/Unboxing

• You can’t put an int into a collection
─Must use Integer instead

• It's a pain to convert back and forth
• Wouldn't it be nice if compiler did it for you?
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public class Freq {
    private static final Integer ONE = new Integer(1);

    public static void main(String[] args) {
        // Maps word (String) to frequency (Integer)
        Map m = new TreeMap();

        for (int i=0; i<args.length; i++) {
            Integer freq = (Integer) m.get(args[i]);
            m.put(args[i], (freq==null ? ONE :
                  new Integer(freq.intValue() + 1)));
        }
        System.out.println(m);
    }
}

Making a Frequency Table—Today
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public class Freq {
   public static void main(String[] args) {
      Map<String, Integer> m = new TreeMap<String, Integer>();
      for (String word : args) {
          Integer freq = m.get(word);
          m.put(word, (freq == null ? 1 : freq + 1));
      }
      System.out.println(m);
   }
}

Making a Frequency Table With
Autoboxing, Generics, and Enhanced for
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IV. Typesafe Enums

Standard approach – int enum pattern
    public class Almanac {
        public static final int SEASON_WINTER = 0;
        public static final int SEASON_SPRING = 1;
        public static final int SEASON_SUMMER = 2;
        public static final int SEASON_FALL   = 3;

        ...  // Remainder omitted
    }
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Disadvantages of int Enum Pattern

• Not typesafe
• No namespace - must prefix constants
• Brittle - constants compiled into clients
• Printed values uninformative
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Current Solution –
Typesafe Enum Pattern

• “Effective Java Programming Language Guide”
• Basic idea - class that exports self-typed

constants and has no public constructor
• Fixes all disadvantages of int pattern
• Other advantages

─ Can add arbitrary methods, fields
─ Can implement interfaces
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Typesafe Enum Pattern Example

import java.util.*;
import java.io.*;

public final class Season implements Comparable, Serializable {
    private final String name;
    public String toString()    { return name; }

    private Season(String name) { this.name = name; }

    public static final Season WINTER = new Season("winter");
    public static final Season SPRING = new Season("spring");
    public static final Season SUMMER = new Season(”summer");
    public static final Season FALL   = new Season("fall");

    private static int nextOrdinal = 0;
    private final  int ordinal = nextOrdinal++;

    public int compareTo(Object o) {
        return ordinal - ((Season)o).ordinal;
    }

    private static final Season[] PRIVATE_VALUES = { WINTER, SPRING, SUMMER, FALL };

    public static final List VALUES =
      Collections.unmodifiableList(
          Arrays.asList(PRIVATE_VALUES));

    private Object readResolve() {
        // Canonicalize
        return PRIVATE_VALUES[ordinal];
    }
}
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Disadvantages of
Typesafe Enum Pattern

• Verbose
• Error prone—each constant occurs 3 times
• Can’t be used in switch statements
• Wouldn't it be nice if compiler took care of it?
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Typesafe Enum Construct

• Compiler support for Typesafe Enum pattern
• Looks like traditional enum (C, C++, Pascal)

─  enum Season { WINTER, SPRING, SUMMER, FALL }
• Far more powerful

─ All advantages of Typesafe Enum pattern
─ Allows programmer to add arbitrary methods, fields

• Can be used in switch statements
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enum Suit { CLUBS, DIAMONDS, HEARTS, SPADES }
enum Rank { DEUCE, THREE, FOUR, FIVE, SIX, SEVEN,
            EIGHT, NINE, TEN, JACK, QUEEN, KING, ACE }

List<Card> deck = new ArrayList<Card>();
for (Suit suit : Suit.values())
    for (Rank rank : Rank.values())
        deck.add(new Card(suit, rank));

Collections.shuffle(deck);

Would require pages of code today!

Enums Interact Well With Generics
and Enhanced for
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Enum With Field, Method
and Constructor

public enum Coin {
    PENNY(1), NICKEL(5), DIME(10), QUARTER(25);

    Coin(int value) { this.value = value; }

    private final int value;

    public int value() { return value; }
}
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Sample Program Using Coin Class

public class CoinTest {
    public static void main(String[] args) {
        for (Coin c : Coin.values())
            System.out.println(c + ":   \t"
                  + c.value() +"¢ \t" + color(c));
    }
    private enum CoinColor { COPPER, NICKEL, SILVER }
    private static CoinColor color(Coin c) {
        switch(c) {
          case PENNY:   return CoinColor.COPPER;
          case NICKEL:  return CoinColor.NICKEL;
          case DIME:
          case QUARTER: return CoinColor.SILVER;
          default: throw new AssertionError("Unknown coin: " + c);
        }
    }
}
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Actual Output of Sample Program

PENNY:          1¢      COPPER

NICKEL:         5¢      NICKEL

DIME:           10¢     SILVER

QUARTER:        25¢     SILVER



   Forthcoming Java Programming Language Features32

V. Varargs

• To write a method that takes an arbitrary
number of parameters, you must use an array

• Creating and initializing arrays is a pain
• Array literals are not pretty
• Wouldn’t it be nice if the compiler did it for you?
• Essential for a usable printf facility
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Using java.text.MessageFormat
—Today

Object[] arguments = {
    new Integer(7),
    new Date(),
    "a disturbance in the Force"
};

String result = MessageFormat.format(
    "At {1,time} on {1,date}, there was {2} on planet "

  + "{0,number,integer}.", arguments);
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Using MessageFormat With Varargs

String result = MessageFormat.format(
    "At {1,time} on {1,date}, there was {2} on planet "
    + "{0,number,integer}.",
    7, new Date(), "a disturbance in the Force");
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Varargs Declaration Syntax

public static String format(String pattern,
                            Object... arguments)

Parameter type of arguments is Object[]
Caller need not use varargs syntax
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VI. Static Import Facility

Classes often export constants
    public class Physics {
        public static final double
            AVOGADROS_NUMBER   = 6.02214199e23;
        public static final double
            BOLTZMANN_CONSTANT = 1.3806503e-23;
        public static final double
            ELECTRON_MASS      = 9.10938188e-31;
    }

Clients must qualify constant names

    double molecules = Physics.AVOGADROS_NUMBER * moles;
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Wrong Way to Avoid
Qualifying Names

// "Constant Interface" antipattern - do not use!
public interface Physics {
  public static final double
      AVOGADROS_NUMBER   = 6.02214199e23;
  public static final double
      BOLTZMANN_CONSTANT = 1.3806503e-23;
  public static final double
      ELECTRON_MASS      = 9.10938188e-31;
}

public class Guacamole implements Physics {
    public static void main(String[] args) {
        double moles = ...;
        double molecules = AVOGADROS_NUMBER * moles;
        ...
    }
}
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Problems With Constant Interface

• Interface abuse—does not define type
• Implementation detail pollutes exported API
• Confuses clients
• Creates long-term commitment
• Wouldn’t it be nice if compiler let us avoid

qualifying names without subtyping?
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Solution—Static Import Facility

• Analogous to package import facility
• Imports the static members from a class, rather

than the classes from a package
• Can import members individually or collectively
• Not rocket science
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Importing Constants
With Static Import

import static org.iso.Physics.*;

public class Guacamole {
    public static void main(String[] args) {
        double molecules = AVOGADROS_NUMBER * moles;
        ...
    }
}

org.iso.Physics now a class, not an interface
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Can Import Methods
as Well as Fields

• Useful for mathematics
• Instead of:  x = Math.cos(Math.PI * theta);
• Say:            x = cos(PI * theta);
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import static gov.treas.Coin.*;

class MyClass {
    public static void main(String[] args) {
        int twoBits = 2 * QUARTER.value();
        ...
    }
}

Static Import
Interacts Well With Enums



   Forthcoming Java Programming Language Features43

VII. Metadata (Annotations)

• Many APIs require a fair amount of boilerplate
─ Example: JAX-RPC web service requires

paired interface and implementation

• Wouldn’t it be nice if language let you annotate
code so that tool could generate boilerplate?

• Many APIs require “side files” to be maintained
─ Example: bean has BeanInfo class

• Wouldn’t it be nice if language let you annotate
code so that tools could generate side files?
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JAX-RPC Web Service—Today

public interface CoffeeOrderIF extends java.rmi.Remote {
    public Coffee [] getPriceList()
        throws java.rmi.RemoteException;
    public String orderCoffee(String name, int quantity)
        throws java.rmi.RemoteException;
}

public class CoffeeOrderImpl implements CoffeeOrderIF {
    public Coffee [] getPriceList() {
        ...
    }
    public String orderCoffee(String name, int quantity) {
        ...
   }
}
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JAX-RPC Web Service
With Metadata

import javax.xml.rpc.*;

public class CoffeeOrder {
    @Remote public Coffee [] getPriceList() {
        ...
    }
    @Remote public String orderCoffee(String name, int quantity) {
        ...
    }
}



   Forthcoming Java Programming Language Features46

Would You Like to Try it Today?

• All features available in early access compiler
─ http//developer.java.sun.com/developer/

earlyAccess/adding_generics

• For documentation, see JSRs 14, 201, 175
─ http://www.jcp.org

• Try it out and send us feeback!
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Conclusion

• Language has always occupied a sweet spot
─ But certain omissions were annoying

• In “Tiger” we intend rectify these omissions
• New features were designed to interact well
• Language will be more expressive

─ Programs will be clearer, shorter, safer

• We will not sacrifice compatibility



Joshua.Bloch@sun.com
Neal.Gafter@sun.com
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