
Forthcoming Java™

Programming
Language Features

Joshua Bloch and Neal Gafter
Senior Staff Engineers
Sun Microsystems, Inc.

 Forthcoming Java Programming Language Features2

A Brief History of the Java™

Programming Language

• 1995 (1.0)—First public release
─ Hit a sweet spot!

• 1997 (1.1)—Nested classes added
─ Support for function objects

• 2001 (1.4)—Assertions added
─ Verify programmers understanding of code

 Forthcoming Java Programming Language Features3

Watch Out for Tigers!

• Java 2 Platform, Standard Edition Release 1.5
• Code name “Tiger”
• Beta—Early 2004
• A major theme—ease of development

 Forthcoming Java Programming Language Features4

Significant Language Changes
Planned for Tiger

 I. Generics
 II. Enhanced for Loop ("foreach")
 III. Autoboxing/Unboxing
 IV. Typesafe Enums
 V. Varargs
 VI. Static Import
VlI. Annotations

 Forthcoming Java Programming Language Features5

Unifying Theme—
Developer-Friendliness

• Increase expressiveness
• Increase safety
• Minimize incompatibility

─ No substantive VM changes
─ All binaries, most sources run unchanged
─ New keywords kept to a minimum (1)

 Forthcoming Java Programming Language Features6

Disclaimer

• All subject to Java Community ProcessSM

─ JSR-014 Generics
─ JSR-175 Metadata (Annotations)
─ JSR-201 Remaining language changes

• For more information
─ http://www.jcp.org

• Participate!

 Forthcoming Java Programming Language Features7

I. Generics

• When you get an element from a collection,
you have to cast
─ Casting is a pain
─ Casting is unsafe—casts may fail at runtime

• Wouldn’t it be nice if you could tell the compiler
what type a collection holds?
─ Compiler could put in the casts for you
─ They’d be guaranteed* to succeed

* Offer void where prohibited by law. Price does not include dealer preparation and licensing.
 Your mileage may vary. Cash value 1/20c.

 Forthcoming Java Programming Language Features8

Filtering a Collection—Today

// Removes 4-letter words from c; elements must be strings
static void expurgate(Collection c) {
 for (Iterator i = c.iterator(); i.hasNext();)
 if (((String) i.next()).length() == 4)
 i.remove();
}

// Alternative form - a bit prettier?
static void expurgate(Collection c) {
 for (Iterator i = c.iterator(); i.hasNext();) {
 String s = (String) i.next();
 if (s.length() == 4)
 i.remove();
 }
}

 Forthcoming Java Programming Language Features9

Filtering a Collection With Generics

// Removes 4-letter words from c
static void expurgate(Collection<String> c) {
 for (Iterator<String> i = c.iterator(); i.hasNext();)
 if (i.next().length() == 4)
 i.remove();
}

• Clearer and Safer
• No cast, extra parentheses, temporary variables
• Provides compile-time type checking

 Forthcoming Java Programming Language Features10

Generics Are Not Templates

• No code-size blowup
• No hideous complexity
• No “template metaprogramming”
• Simply provides compile-time type safety

and eliminates the need for casts

 Forthcoming Java Programming Language Features11

II. Enhanced for Loop (“foreach”)

• Iterating over collections is a pain
• Often, iterator unused except to get elements
• Iterators are error-prone

─ Iterator variable occurs three times per loop
─ Gives you two opportunities to get it wrong
─ Common cut-and-paste error

• Wouldn’t it be nice if the compiler took care
of the iterator for you?

 Forthcoming Java Programming Language Features12

void cancelAll(Collection c) {
 for (Iterator i = c.iterator(); i.hasNext();) {
 TimerTask tt = (TimerTask) i.next();
 tt.cancel();
 }
}

Applying a Method to Each
Element in a Collection—Today

 Forthcoming Java Programming Language Features13

void cancelAll(Collection c) {
 for (Object o : c)
 ((TimerTask)o).cancel();
}

• Clearer and Safer
• No iterator-related clutter
• No possibility of using the wrong iterator

Applying Method to Each Element
In a Collection With Enhanced for

 Forthcoming Java Programming Language Features14

void cancelAll(Collection<TimerTask> c) {
 for (TimerTask task : c)
 task.cancel();
}

• Much shorter, clearer and safer

• Code says exactly what it does

Enhanced for Really Shines
When Combined With Generics

 Forthcoming Java Programming Language Features15

// Returns the sum of the elements of a
int sum(int[] a) {
 int result = 0;
 for (int i : a)
 result += i;
 return result;
}

• Eliminates array index rather than iterator
• Similar advantages

It Works For Arrays, Too

 Forthcoming Java Programming Language Features16

List suits = ...;
List ranks = ...;
List sortedDeck = new ArrayList();

// Broken - throws NoSuchElementException!
for (Iterator i = suits.iterator(); i.hasNext();)
 for (Iterator j = ranks.iterator(); j.hasNext();)
 sortedDeck.add(new Card(i.next(), j.next()));

Nested Iteration Is Tricky

 Forthcoming Java Programming Language Features17

List suits = ...;
List ranks = ...;
List sortedDeck = new ArrayList();

// Broken - throws NoSuchElementException!
for (Iterator i = suits.iterator(); i.hasNext();)
 for (Iterator j = ranks.iterator(); j.hasNext();)
 sortedDeck.add(new Card(i.next(), j.next()));

// Fixed - a bit ugly
for (Iterator i = suits.iterator(); i.hasNext();) {
 Suit suit = (Suit) i.next();
 for (Iterator j = ranks.iterator(); j.hasNext();)
 sortedDeck.add(new Card(suit, j.next()));
}

Nested Iteration Is Tricky

 Forthcoming Java Programming Language Features18

With Enhanced for, It’s Easy!

for (Suit suit : suits)
 for (Rank rank : ranks)
 sortedDeck.add(new Card(suit, rank));

 Forthcoming Java Programming Language Features19

III. Autoboxing/Unboxing

• You can’t put an int into a collection
─Must use Integer instead

• It's a pain to convert back and forth
• Wouldn't it be nice if compiler did it for you?

 Forthcoming Java Programming Language Features20

public class Freq {
 private static final Integer ONE = new Integer(1);

 public static void main(String[] args) {
 // Maps word (String) to frequency (Integer)
 Map m = new TreeMap();

 for (int i=0; i<args.length; i++) {
 Integer freq = (Integer) m.get(args[i]);
 m.put(args[i], (freq==null ? ONE :
 new Integer(freq.intValue() + 1)));
 }
 System.out.println(m);
 }
}

Making a Frequency Table—Today

 Forthcoming Java Programming Language Features21

public class Freq {
 public static void main(String[] args) {
 Map<String, Integer> m = new TreeMap<String, Integer>();
 for (String word : args) {
 Integer freq = m.get(word);
 m.put(word, (freq == null ? 1 : freq + 1));
 }
 System.out.println(m);
 }
}

Making a Frequency Table With
Autoboxing, Generics, and Enhanced for

 Forthcoming Java Programming Language Features22

IV. Typesafe Enums

Standard approach – int enum pattern
 public class Almanac {
 public static final int SEASON_WINTER = 0;
 public static final int SEASON_SPRING = 1;
 public static final int SEASON_SUMMER = 2;
 public static final int SEASON_FALL = 3;

 ... // Remainder omitted
 }

 Forthcoming Java Programming Language Features23

Disadvantages of int Enum Pattern

• Not typesafe
• No namespace - must prefix constants
• Brittle - constants compiled into clients
• Printed values uninformative

 Forthcoming Java Programming Language Features24

Current Solution –
Typesafe Enum Pattern

• “Effective Java Programming Language Guide”
• Basic idea - class that exports self-typed

constants and has no public constructor
• Fixes all disadvantages of int pattern
• Other advantages

─ Can add arbitrary methods, fields
─ Can implement interfaces

 Forthcoming Java Programming Language Features25

Typesafe Enum Pattern Example

import java.util.*;
import java.io.*;

public final class Season implements Comparable, Serializable {
 private final String name;
 public String toString() { return name; }

 private Season(String name) { this.name = name; }

 public static final Season WINTER = new Season("winter");
 public static final Season SPRING = new Season("spring");
 public static final Season SUMMER = new Season(”summer");
 public static final Season FALL = new Season("fall");

 private static int nextOrdinal = 0;
 private final int ordinal = nextOrdinal++;

 public int compareTo(Object o) {
 return ordinal - ((Season)o).ordinal;
 }

 private static final Season[] PRIVATE_VALUES = { WINTER, SPRING, SUMMER, FALL };

 public static final List VALUES =
 Collections.unmodifiableList(
 Arrays.asList(PRIVATE_VALUES));

 private Object readResolve() {
 // Canonicalize
 return PRIVATE_VALUES[ordinal];
 }
}

 Forthcoming Java Programming Language Features26

Disadvantages of
Typesafe Enum Pattern

• Verbose
• Error prone—each constant occurs 3 times
• Can’t be used in switch statements
• Wouldn't it be nice if compiler took care of it?

 Forthcoming Java Programming Language Features27

Typesafe Enum Construct

• Compiler support for Typesafe Enum pattern
• Looks like traditional enum (C, C++, Pascal)

─ enum Season { WINTER, SPRING, SUMMER, FALL }
• Far more powerful

─ All advantages of Typesafe Enum pattern
─ Allows programmer to add arbitrary methods, fields

• Can be used in switch statements

 Forthcoming Java Programming Language Features28

enum Suit { CLUBS, DIAMONDS, HEARTS, SPADES }
enum Rank { DEUCE, THREE, FOUR, FIVE, SIX, SEVEN,
 EIGHT, NINE, TEN, JACK, QUEEN, KING, ACE }

List<Card> deck = new ArrayList<Card>();
for (Suit suit : Suit.values())
 for (Rank rank : Rank.values())
 deck.add(new Card(suit, rank));

Collections.shuffle(deck);

Would require pages of code today!

Enums Interact Well With Generics
and Enhanced for

 Forthcoming Java Programming Language Features29

Enum With Field, Method
and Constructor

public enum Coin {
 PENNY(1), NICKEL(5), DIME(10), QUARTER(25);

 Coin(int value) { this.value = value; }

 private final int value;

 public int value() { return value; }
}

 Forthcoming Java Programming Language Features30

Sample Program Using Coin Class

public class CoinTest {
 public static void main(String[] args) {
 for (Coin c : Coin.values())
 System.out.println(c + ": \t"
 + c.value() +"¢ \t" + color(c));
 }
 private enum CoinColor { COPPER, NICKEL, SILVER }
 private static CoinColor color(Coin c) {
 switch(c) {
 case PENNY: return CoinColor.COPPER;
 case NICKEL: return CoinColor.NICKEL;
 case DIME:
 case QUARTER: return CoinColor.SILVER;
 default: throw new AssertionError("Unknown coin: " + c);
 }
 }
}

 Forthcoming Java Programming Language Features31

Actual Output of Sample Program

PENNY: 1¢ COPPER

NICKEL: 5¢ NICKEL

DIME: 10¢ SILVER

QUARTER: 25¢ SILVER

 Forthcoming Java Programming Language Features32

V. Varargs

• To write a method that takes an arbitrary
number of parameters, you must use an array

• Creating and initializing arrays is a pain
• Array literals are not pretty
• Wouldn’t it be nice if the compiler did it for you?
• Essential for a usable printf facility

 Forthcoming Java Programming Language Features33

Using java.text.MessageFormat
—Today

Object[] arguments = {
 new Integer(7),
 new Date(),
 "a disturbance in the Force"
};

String result = MessageFormat.format(
 "At {1,time} on {1,date}, there was {2} on planet "

 + "{0,number,integer}.", arguments);

 Forthcoming Java Programming Language Features34

Using MessageFormat With Varargs

String result = MessageFormat.format(
 "At {1,time} on {1,date}, there was {2} on planet "
 + "{0,number,integer}.",
 7, new Date(), "a disturbance in the Force");

 Forthcoming Java Programming Language Features35

Varargs Declaration Syntax

public static String format(String pattern,
 Object... arguments)

Parameter type of arguments is Object[]
Caller need not use varargs syntax

 Forthcoming Java Programming Language Features36

VI. Static Import Facility

Classes often export constants
 public class Physics {
 public static final double
 AVOGADROS_NUMBER = 6.02214199e23;
 public static final double
 BOLTZMANN_CONSTANT = 1.3806503e-23;
 public static final double
 ELECTRON_MASS = 9.10938188e-31;
 }

Clients must qualify constant names

 double molecules = Physics.AVOGADROS_NUMBER * moles;

 Forthcoming Java Programming Language Features37

Wrong Way to Avoid
Qualifying Names

// "Constant Interface" antipattern - do not use!
public interface Physics {
 public static final double
 AVOGADROS_NUMBER = 6.02214199e23;
 public static final double
 BOLTZMANN_CONSTANT = 1.3806503e-23;
 public static final double
 ELECTRON_MASS = 9.10938188e-31;
}

public class Guacamole implements Physics {
 public static void main(String[] args) {
 double moles = ...;
 double molecules = AVOGADROS_NUMBER * moles;
 ...
 }
}

 Forthcoming Java Programming Language Features38

Problems With Constant Interface

• Interface abuse—does not define type
• Implementation detail pollutes exported API
• Confuses clients
• Creates long-term commitment
• Wouldn’t it be nice if compiler let us avoid

qualifying names without subtyping?

 Forthcoming Java Programming Language Features39

Solution—Static Import Facility

• Analogous to package import facility
• Imports the static members from a class, rather

than the classes from a package
• Can import members individually or collectively
• Not rocket science

 Forthcoming Java Programming Language Features40

Importing Constants
With Static Import

import static org.iso.Physics.*;

public class Guacamole {
 public static void main(String[] args) {
 double molecules = AVOGADROS_NUMBER * moles;
 ...
 }
}

org.iso.Physics now a class, not an interface

 Forthcoming Java Programming Language Features41

Can Import Methods
as Well as Fields

• Useful for mathematics
• Instead of: x = Math.cos(Math.PI * theta);
• Say: x = cos(PI * theta);

 Forthcoming Java Programming Language Features42

import static gov.treas.Coin.*;

class MyClass {
 public static void main(String[] args) {
 int twoBits = 2 * QUARTER.value();
 ...
 }
}

Static Import
Interacts Well With Enums

 Forthcoming Java Programming Language Features43

VII. Metadata (Annotations)

• Many APIs require a fair amount of boilerplate
─ Example: JAX-RPC web service requires

paired interface and implementation

• Wouldn’t it be nice if language let you annotate
code so that tool could generate boilerplate?

• Many APIs require “side files” to be maintained
─ Example: bean has BeanInfo class

• Wouldn’t it be nice if language let you annotate
code so that tools could generate side files?

 Forthcoming Java Programming Language Features44

JAX-RPC Web Service—Today

public interface CoffeeOrderIF extends java.rmi.Remote {
 public Coffee [] getPriceList()
 throws java.rmi.RemoteException;
 public String orderCoffee(String name, int quantity)
 throws java.rmi.RemoteException;
}

public class CoffeeOrderImpl implements CoffeeOrderIF {
 public Coffee [] getPriceList() {
 ...
 }
 public String orderCoffee(String name, int quantity) {
 ...
 }
}

 Forthcoming Java Programming Language Features45

JAX-RPC Web Service
With Metadata

import javax.xml.rpc.*;

public class CoffeeOrder {
 @Remote public Coffee [] getPriceList() {
 ...
 }
 @Remote public String orderCoffee(String name, int quantity) {
 ...
 }
}

 Forthcoming Java Programming Language Features46

Would You Like to Try it Today?

• All features available in early access compiler
─ http//developer.java.sun.com/developer/

earlyAccess/adding_generics

• For documentation, see JSRs 14, 201, 175
─ http://www.jcp.org

• Try it out and send us feeback!

 Forthcoming Java Programming Language Features47

Conclusion

• Language has always occupied a sweet spot
─ But certain omissions were annoying

• In “Tiger” we intend rectify these omissions
• New features were designed to interact well
• Language will be more expressive

─ Programs will be clearer, shorter, safer

• We will not sacrifice compatibility

Joshua.Bloch@sun.com
Neal.Gafter@sun.com

	A Brief History of the Java™ Programming Language
	Watch Out for Tigers!
	Significant Language Changes Planned for Tiger
	Unifying Theme—Developer-Friendliness
	Disclaimer
	I. Generics
	Filtering a Collection—Today
	Filtering a Collection With Generics
	Generics Are Not Templates
	II. Enhanced for Loop (“foreach”)
	Applying a Method to Each Element in a Collection—Today
	Applying Method to Each Element In a Collection With Enhanced for
	Enhanced for Really ShinesWhen Combined With Generics
	It Works For Arrays, Too
	Nested Iteration Is Tricky
	Nested Iteration Is Tricky
	With Enhanced for, It’s Easy!
	III. Autoboxing/Unboxing
	Making a Frequency Table—Today
	Making a Frequency Table With Autoboxing, Generics, and Enhanced for
	IV. Typesafe Enums
	Disadvantages of int Enum Pattern
	Current Solution – Typesafe Enum Pattern
	Typesafe Enum Pattern Example
	Disadvantages of Typesafe Enum Pattern
	Typesafe Enum Construct
	Enums Interact Well With Generics and Enhanced for
	Enum With Field, Method and Constructor
	Sample Program Using Coin Class
	Actual Output of Sample Program
	V. Varargs
	Using java.text.MessageFormat —Today
	Using MessageFormat With Varargs
	Varargs Declaration Syntax
	VI. Static Import Facility
	Wrong Way to Avoid Qualifying Names
	Problems With Constant Interface
	Solution—Static Import Facility
	Importing ConstantsWith Static Import
	Can Import Methodsas Well as Fields
	Static ImportInteracts Well With Enums
	VII. Metadata (Annotations)
	JAX-RPC Web Service—Today
	JAX-RPC Web Service With Metadata
	Would You Like to Try it Today?
	Conclusion

